Noise adjusted version of generalized principal component analysis

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interference and noise-adjusted principal components analysis

The goal of principal components analysis (PCA) is to find principal components in accordance with maximum variance of a data matrix. However, it has been shown recently that such variance-based principal components may not adequately represent image quality. As a result, a modified PCA approach based on maximization of SNR was proposed. Called maximum noise fraction (MNF) transformation or noi...

متن کامل

Robust Principal Component Analysis with Complex Noise

The research on robust principal component analysis (RPCA) has been attracting much attention recently. The original RPCA model assumes sparse noise, and use the L1-norm to characterize the error term. In practice, however, the noise is much more complex and it is not appropriate to simply use a certain Lp-norm for noise modeling. We propose a generative RPCA model under the Bayesian framework ...

متن کامل

Generalized mean for robust principal component analysis

In this paper, we propose a robust principal component analysis (PCA) to overcome the problem that PCA is prone to outliers included in the training set. Different from the other alternatives which commonly replace L2-norm by other distance measures, the proposed method alleviates the negative effect of outliers using the characteristic of the generalized mean keeping the use of the Euclidean d...

متن کامل

A random version of principal component analysis in data clustering

Principal component analysis (PCA) is a widespread technique for data analysis that relies on the covariance/correlation matrix of the analyzed data. However, to properly work with high-dimensional data sets, PCA poses severe mathematical constraints on the minimum number of different replicates, or samples, that must be included in the analysis. Generally, improper sampling is due to a small n...

متن کامل

Compression of Breast Cancer Images By Principal Component Analysis

The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN  of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most      relevant information of X. These eigenvectors are called principal components [8]. Ass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES

سال: 2016

ISSN: 1300-0632,1303-6203

DOI: 10.3906/elk-1303-151